• 中国科技论文统计源期刊(中国科技核心期刊)
  • 中国医药卫生核心期刊
  • 中国抗癌协会系列期刊

视觉反馈平衡训练仪训练对脑卒中后平衡及步行能力影响的Meta分析

王晓春, 王俊华, 谢水平

王晓春, 王俊华, 谢水平. 视觉反馈平衡训练仪训练对脑卒中后平衡及步行能力影响的Meta分析[J]. 循证医学, 2019, 19(2): 86-91. DOI: 10.12019/j.issn.1671-5144.2019.02.009
引用本文: 王晓春, 王俊华, 谢水平. 视觉反馈平衡训练仪训练对脑卒中后平衡及步行能力影响的Meta分析[J]. 循证医学, 2019, 19(2): 86-91. DOI: 10.12019/j.issn.1671-5144.2019.02.009
WANG Xiao-chun, WANG Jun-hua, XIE Shui-ping. Effect of Visual-Feedback Balance Training on Balance and Walking Ability after Stroke: A Meta-Analysis[J]. Journal of Evidence-Based Medicine, 2019, 19(2): 86-91. DOI: 10.12019/j.issn.1671-5144.2019.02.009
Citation: WANG Xiao-chun, WANG Jun-hua, XIE Shui-ping. Effect of Visual-Feedback Balance Training on Balance and Walking Ability after Stroke: A Meta-Analysis[J]. Journal of Evidence-Based Medicine, 2019, 19(2): 86-91. DOI: 10.12019/j.issn.1671-5144.2019.02.009

视觉反馈平衡训练仪训练对脑卒中后平衡及步行能力影响的Meta分析

基金项目: 广东省科技支撑计划资助项目(2014A020212251)
详细信息
    作者简介:

    王晓春(1991-),女,广东梅州人,硕士研究生,从事神经康复技术研究。

    通讯作者:

    王俊华, Tel: 020-83482172, E-mail: junhuawang@qq.com

  • 中图分类号: R496;R743

Effect of Visual-Feedback Balance Training on Balance and Walking Ability after Stroke: A Meta-Analysis

  • 摘要: 目的 系统评价视觉反馈平衡训练仪训练对脑卒中患者平衡能力、步行能力以及日常生活能力的康复疗效。 方法 计算机检索PubMed、Web of Science、EMBASE、Cochrane 图书馆、中国知网、万方、维普中文科技期刊全文等国内外数据库从建库到2018年4月的有关文献,收集视觉反馈平衡训练仪训练对脑卒中患者平衡及步行能力影响的临床随机对照试验,并运用RevMan 5.3软件对符合纳入标准的所有结果进行Meta分析。 结果 最后选入12篇文献共565例患者。Meta分析结果显示: 视觉反馈平衡仪训练组与常规平衡训练组平衡量表评分12篇文献合并效应量均数差=6.49,95%可信区间5.63~7.35,Z=14.77,P<0.000 01,两组差异有统计学意义;视觉反馈平衡仪训练组与常规平衡训练组“起立-行走”计时6篇文献合并效应量均数差=-3.91,95%可信区间-4.68~-3.14,Z=9.97,P<0.000 01,两组差异有统计学意义;视觉反馈平衡仪训练组与常规平衡训练组日常生活能力量表评分2篇文献合并效应量均数差=5.58,95%可信区间2.31~8.84,Z=3.35,P=0.000 8,两组差异有统计学意义。 结论 视觉反馈平衡训练仪训练能有效增强脑卒中患者的站位平衡功能并改善他们的步行能力与日常生活活动能力,且较传统平衡训练改善更明显。但是目前与平衡仪训练相关的高水平的临床研究较少,故需要进行大样本量的临床随机对照试验来证实其有效性。
    Abstract: Objective To systematically review the effect of visual-feedback balanced training on balance, walking and daily living after stroke. Methods Randomized controlled trials (RCTs) about balance training instrument for balance and walking ability of stroke were electronically searched in PubMed, Web of Science, EMBASE, the Cochrane library, China National Knowledge Infrastructure,Wanfang Data, VIP Database for Chinese Technical Periodicals from the date of establishment to April 2018. Using RevMan 5.3 software to analyze all the results that conform to the standard by meta. Results A total of 565 patients of 12 RCTs were included. The results of meta analysis showed that after treatment, the Berg balance scale scores of 12 articles of balancing instrument training group and conventional balance training group with effect of the amount of MD=6.49, 95%CI 5.63~7.35, Z=14.77,P<0.000 01, the two groups have significant difference. The “Up & Go test”of 6 articles of balancing instrument training group and conventional balance training group with effect of the amount of MD=-3.91,95%CI -4.68~-3.14,Z=9.97,P<0.000 01, the two groups have significant differerce. The modify Barthel scores of balancing instrument training group and conventional balance training group with effect of the amount of MD=5.58, 95%CI 2.31~8.84, Z=3.35,P=0.000 8, the two groups have significant difference. Conclusion Balanced training instrument exercises effectively enhance the balance function of stroke patients, improve their walking function and their daily living ability, and it is more obvious than traditional balance training. However, there are few high level clinical studies related to the training of balance instrument, so a large sample of clinical randomized controlled trials is needed to verify its effectiveness.
  • [1] 朱琪,乔蕾,杨坚, 等. 视觉代偿对脑卒中偏瘫患者平衡功能障碍的影响[A]. 中国康复医学会第五次全国老年康复学术大会上海市康复医学会成立20周年暨老年康复诊疗提高班论文汇编[C]. 上海:2008:100-102.
    [2] 李媛媛. 2010年全球脑卒中发病情况分析[D]. 郑州:郑州大学, 2017.
    [3] 陈冲,高晓平,冯小军. MOTOmed智能运动训练系统训练对脑卒中偏瘫患者平衡功能及日常生活活动能力的影响[J]. 中华物理医学与康复杂志, 2010, 32(7):510-512.
    [4] HUNG J W,CHOU C X,HSIEH Y W,et al.Randomized comparison trial of balance training by using exergaming and conventiona weight-shift therapy in patients with chronic stroke[J]. Arch Phys Med Rehabil, 2014,95(9):1629-1637.
    [5] MACTASZEK J, BORAWSKA S, WOJCIKIEWICZ J.Influence of posturographic platform biofeedback training on the dynamic balance of adult strokepatients[J]. J Stroke Cerebrovasc Dis, 2014, 23(6):1269-1274.
    [6] 王志凡, 杨秀琳, 陈旺盛, 等. 抗性淀粉对饮食诱导肥胖大鼠排便状况及肠道菌群的影响[J]. 动物营养学报, 2016, 28(5): 1626-1632.
    [7] 姚瑛瑛, 张峰, 李艳琴,等.水杨酸铬(Ⅲ)配合物对肥胖小鼠肠道菌群的影响[J]. 食品与药品, 2014,16(3): 166-170.
    [8] 刘雪姬, 陈庆森,闫亚丽. 高脂饮食对小鼠肠道菌群的影响[J]. 食品科学, 2011, 32(23): 306-311.
    [9] 曹战江, 于健春, 康维明, 等. 补充n-3多不饱和脂肪酸对高脂饮食大鼠肠道菌群及门静脉血内毒素的影响[J]. 中国医学科学院学报, 2014, 36(5): 496-500.
    [10] NEYRINCK A M, ALLIGIER M, MEMVANGA P B, et al.Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue[J]. PLoS One, 2013, 8(11): e81252.
    [11] WANG J H, BOSE S, KIM G C, et al.Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota[J]. PLoS One, 2014, 9(1): e86117.
    [12] CANO P G, SANTACRUZ A, MOYA Á, et al.Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity[J]. PLoS One, 2012, 7(7): e41079.
    [13] CANO P G, SANTACRUZ A, TREJO F M, et al.Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice[J]. Obesity (Silver Spring), 2013,21(11): 2310-2321.
    [14] MOYA-PÉREZ A, NEEF A, SANZ Y. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice[J]. PLoS One, 2015,10(7): e0126976.
    [15] WANG J H, BOSE S, KIM H G, et al.Fermented rhizoma atractylodis macrocephalae alleviates high fat diet-induced obesity in association with regulation of intestinal permeability and microbiota in rats[J]. Sci Rep, 2015,5: 8391.
    [16] DO T T, HINDLET P, WALIGORA-DUPRIET A J, et al.Disturbed intestinal nitrogen homeostasis in a mouse model of high-fat diet-induced obesity and glucose intolerance[J]. Am J Physiol Endocrinol Metab, 2014,306(6): E668-680.
    [17] CANI P D, NEYRINCK A M, FAVA F, et al.Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia, 2007, 50(11): 2374-2383.
    [18] CANI P D, BIBILONI R, KNAUF C, et al.Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
    [19] DELZENNE N M, NEYRINCK A M, BACKHED F, et al.Targeting gut microbiota in obesity: Effects of prebiotics and probiotics[J]. Nat Rev Endocrinol, 2011,7(11): 639-646.
    [20] DELZENNE N M, NEYRINCK A M,CANI P D.Gut microbiota and metabolic disorders: How prebiotic can work?[J]. Br J Nutr, 2013,109(Suppl 2): S81-85.
    [21] DELZENNE N M, NEYRINCK A M, CANI P D.Modulation of the gut microbiota by nutrients with prebiotic properties: Consequences for host health in the context of obesity and metabolic syndrome[J]. Microb Cell Fact, 2011, 10(Suppl 1): S10.
    [22] LI H, LELLIOTT C, HAKANSSON P, et al.Intestinal, adipose, and liver inflammation in diet-induced obese mice[J]. Metabolism, 2008, 57(12): 1704-1710.
    [23] GOEL A, GUPTA M, AGGARWAL R.Gut microbiota and liver disease[J]. J Gastroenterol Hepatol, 2014, 29(6): 1139-1148.
    [24] LI X M, JEFFERS L J, REDDY K R, et al.Immunophenotyping of lymphocytes in liver tissue of patients with chronic liver diseases by flow cytometry[J]. Hepatology, 1991, 14(1): 121-127.
    [25] BORST S E,CONOVER C F.High-fat diet induces increased tissue expression of TNF-alpha[J]. Life Sci, 2005, 77(17): 2156-2165.
    [26] SANZ Y, RASTMANESH R, AGOSTONI C.Understanding the role of gut microbes and probiotics in obesity: How far are we?[J]. Pharmacol Res, 2013,69(1): 144-155.
    [27] CANI P D, DELZENNE N M.Interplay between obesity and associated metabolic disorders: New insights into the gut microbiota[J]. Curr Opin Pharmacol, 2009, 9(6): 737-743.
    [28] BROWN J M, HAZEN S L.The gut microbial endocrine organ: Bacterially-derived signals driving cardiometabolic diseases[J]. Annu Rev Med, 2015, 66: 343-359.
    [29] CANI P D, DELZENNE N M.The role of the gut microbiota in energy metabolism and metabolic disease[J]. Curr Pharm Des, 2009,15(13): 1546-1558.
    [30] LIN H V, FRASSETTO A, KOWALIK E J Jr., et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. Plos One, 2012,7(4):e35240.
    [31] KIMURA I, OZAWA K, INOUE D, et al.The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun, 2013,4(11): 1829.
    [32] TOLHURST G, HEFFRON H, YU S L, et al.Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371.
计量
  • 文章访问数:  169
  • HTML全文浏览量:  5
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-04
  • 发布日期:  2019-04-27

目录

    /

    返回文章
    返回