基于SEER数据库构建转移性肝细胞癌患者早期死亡预测模型

    Constructing an Early Death Prediction Model for Metastatic Hepatocellular Carcinoma Patients Based on the SEER Database

    • 摘要:
      目的 通过分析美国癌症研究所的监测、流行病学和最终结局(Surveillance, Epidemiology, and End Results,SEER)数据库中转移性肝细胞癌(metastatic hepatocellular carcinoma,mHCC)患者的临床信息和生存数据,明确mHCC患者早期死亡的影响因素,并构建mHCC患者的临床预测列线图模型。
      方法 从SEER数据库中下载、分析并筛选出1 691例符合条件的mHCC患者,使用R语言根据多因素Logistic回归中的危险因素构建列线图。利用受试者工作特征曲线(receiver operating characteristic curve,ROC)、校准曲线和临床决策曲线评估列线图模型的预测性能。
      结果 影响mHCC患者早期死亡的因素有:AFP(P<0.01)、T分期(P<0.05)、N分期(P<0.01)、放疗(P<0.01)、化疗(P<0.001)、手术(P<0.01)和肺转移(P<0.001),基于上述7个变量构建列线图预测模型。验证结果显示,该模型在训练集与验证集中ROC曲线的曲线下面积(area under curve,AUC)值分别为0.819和0.788,表明其具有良好的区分度;校准曲线显示预测值与实际观测值高度一致;决策曲线分析进一步证实其具有显著的临床净获益。
      结论 通过对SEER数据库分析所构建的列线图能计算出mHCC患者发生早期死亡的概率,有助于临床医生识别早期死亡的高危mHCC患者,并制定个体化临床决策。

       

      Abstract:
      Objective To identify the risk factors for early death in metastatic hepatocellular carcinoma (mHCC) patients and construct a clinical prediction nomogram for mHCC patients based on clinical information and survival data of mHCC patients from the Surveillance, Epidemiology, and End Results (SEER) database.
      Methods 1 691 eligible mHCC patients were downloaded and selected from the SEER database. Using R language, a nomogram was constructed based on the risk factors in multifactorial logistic regression. The predictive performance of the nomogram was evaluated through receiver operating characteristic curve (ROC) curve, calibration curve, and clinical decision curve.
      Results The risk factors for early death in mHCC patients included: AFP (P<0.01), T stage (P<0.05), N stage (P<0.01), radiotherapy (P<0.01), chemotherapy (P<0.001), surgery (P<0.01), and lung metastasis (P<0.001). A nomogram prediction model was constructed based on these seven variables. Validation results showed that the model achieved area under curve (AUC) values of 0.819 and 0.788 in the training and validation sets, respectively, indicating good discriminative ability. The calibration curve demonstrated a high consistency between the predictions and actual observations. Decision curve analysis further confirmed its significant clinical net benefit.
      Conclusions The nomogram can calculate the probability of early death in mHCC patients. It assists clinical doctors in identifying patients with high-risk mHCC for drawing up personalized clinical decisions.

       

    /

    返回文章
    返回