2020年血液肿瘤靶向免疫检查点治疗研究进展
耿素霞, 杜欣
广东省人民医院血液科、广东省医学科学院, 广州510080
通讯作者: 杜欣, Tel: 020-83827812-62122; E-mail:miyadu@hotmail.com
作者简介:

耿素霞(1976-),女,河南郑州人,副研究员,医学博士,研究方向为血液肿瘤T细胞免疫相关的基础与临床研究。

关键词: 血液肿瘤; 免疫治疗; 免疫检查点抑制剂; 临床试验
中图分类号: R733.7 文献标识码: A 收稿日期: 2021-01-27
Research Advances of Targeted Immune Checkpoint Therapy for Hematologic Tumor in 2020
GENG Su-xia, DU Xin
Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
Key words: haematological malignancies; immunotherapy; immune checkpoint inhibitor; clinical trial

免疫检查点在维持机体免疫功能平衡方面发挥重要作用, 然而, 许多癌细胞利用这种分子逃避免疫监视。研究发现血液肿瘤患者免疫检查点分子异常高表达, 免疫检查点阻断疗法在多种血液肿瘤的应用也显示出明显的临床疗效[1, 2]。但仍存在较多问题:并非所有患者都有效、缺乏预测治疗反应的标志以及与其他疗法联用的问题[3]。本文对血液肿瘤患者免疫检查点如PD-1、CTLA-4、LAG-3、TIM-3和TIGIT的表达、检查点阻断对患者的疗效或临床试验结果做一简要综述。

1 程序性细胞死亡蛋白-1(programmed cell death protein-1, PD-1)

PD-1是目前研究最广泛的抑制性检查点分子, 许多恶性肿瘤表达PD-1配体1(programmed cell death protein ligand-1, PD-L1)和/或PD-L2, 它们与T细胞上的PD-1结合并诱导T细胞耗竭, 从而导致恶性细胞从抗肿瘤免疫应答中逃逸。阻断PD-1/PD-L1途径使T细胞摆脱肿瘤细胞的抑制作用, 可恢复T细胞介导的抗肿瘤免疫反应。

PD-1/PD-L1途径和PD-1抑制剂已在各种淋巴瘤患者中得到了广泛测试。纳武利尤单抗和帕博丽珠单抗是针对PD-1的人源化单克隆IgG4抗体, 已被美国食品药品监督管理局(Food and Drug Administration, FDA)批准用于治疗某些类型的复发或难治性(relapsed or refractory, R/R)淋巴瘤患者。经典霍奇金淋巴瘤(classic Hodgkin lymphoma, CHL)患者, 由于9p24.1的高频遗传改变和PD-1配体的高表达, 缓解率最高[4]。弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma, DLBCL)患者染色体9p24.1的改变和PD-L1/ PD-L1的表达频率较低, 因此未经评估的DLBCL患者不建议使用PD-1抑制剂治疗, 但是, 特定类型的DLBCL(如:原发性纵隔大B细胞淋巴瘤、原发性中枢神经系统淋巴瘤和原发性睾丸淋巴瘤)或具有PD-L1改变的患者可能会受益于PD-1抑制疗法[5, 6]。PD-L1在间变性大细胞淋巴瘤(anaplasitc large cell lymphoma, ALCL)患者高表达, 尤其是间变性淋巴瘤激酶阳性患者, 几例病例报道显示了R/R ALCL患者对PD-1阻断的明显和持久性反应[7, 8]。此外, 最新研究表明, PD-1抑制剂与其他药物联合使用时, 例如化疗、其他检查点抑制剂、组蛋白去乙酰酶抑制剂或免疫调节剂联合使用, 可能具有协同作用[9, 10, 11, 12]。由于淋巴瘤疾病特征的异质性、复杂性, 对其免疫生物学特性的进一步研究则有助于我们确定适合PD-1抑制剂治疗的特定淋巴瘤类型或亚型。但PD-1抑制剂在治疗这些淋巴瘤方面的前景仍不清楚, 仍需进一步的临床研究。

多发性骨髓瘤(multiple myeloma, MM)仍然是无法治愈的恶性肿瘤, 在R/R MM患者中, 尽管早期临床试验中帕博丽珠单抗、来那度胺和低剂量地塞米松联合治疗显示了良好疗效, 然而在随后的Ⅲ 期临床试验中却出现了不良获益风险[13, 14]。PD-1阻断剂尚未显示出对MM患者的临床益处, 可能与MM患者骨髓微环境中相关抑制因素有关, 如T细胞表型或功能改变, 髓系来源的抑制细胞或调节性T细胞(T regulatory cell, Treg)等有关, 但值得注意的是, 一些患者在临床试验中停止使用帕博丽珠单抗后获得了长期缓解[15, 16, 17], 因此, 仍需进一步研究以筛选有治疗反应的患者。最近研究发现, MM患者骨髓中的CD8+T细胞, 除了表达PD-1以外, 还共表达其他检查点抑制性受体, 并表现出终末分化的表型, 单独PD-1阻断很难逆转这类患者的T细胞衰竭, 有趣的是, 在骨髓瘤细胞过度表达TGF-β 的患者, 存在TGF-β 抑制剂的情况下, 抗PD-1显著提高了患者骨髓CD8+T细胞的增殖, 因此, PD-1和TGF-β 的联合阻断可能对该类MM的治疗有效[18]

单一抗PD-1单克隆抗体应用于急性髓性白血病(acute myeloid leukemia, AML)患者临床疗效不明显, 若与去甲基化药物(hypomethylating agent, HMA)联合应用对于复发/难治以及老年AML患者(作为一线治疗选择)疗效喜人, 而且在传统的诱导治疗方案中添加PD-1抑制剂也安全可行[15, 19]。但与实体瘤患者的疗效相比, AML患者的反应具有异质性、持续时间短, 提示一些尚未确定的肿瘤内在因素, 如肿瘤微环境(tumor microenvironment, TME)和T细胞因素等可能会影响AML患者PD-1阻断的疗效。Abbas HA等对R/R AML患者, 阿扎胞苷(Azacitidine, AZA)/PD-1单抗(纳武利尤单抗, Nivo)联合治疗前后骨髓细胞进行单细胞RNA测序发现, AML细胞7/7q缺失, 具有白血病干细胞的特征和代谢/氧化途径, 与AZA/Nivo治疗耐药相关, 此外, 治疗有效者, AZA/Nivo还诱导了新的T细胞克隆的扩增[20]。由于骨髓增生异常综合征(myelodysplastic syndrome, MDS)患者PD-1和PD-L1表达升高, 而抗PD-1治疗可引起细胞毒性T淋巴细胞相关抗原-4(cytotoxic T lymphocyte-associated antigen-4)的升高, 反之, 抗CTLA-4治疗也可引起PD-1升高, 因此Kiyomi M等在接受或者未接受HMA治疗的MDS患者, 进行了联合应用Nivo和/或CTLA-4单抗(伊匹木单抗, Ipi)的Ⅱ 期临床研究, 结果显示11例AZA治疗失败的患者联用Nivo和Ipi, 总反应率(overall response rate, ORR)为36%, 中位总生存期(overall survival, OS)和无进展生存期(progression-free survival, PFS)分别为11.4个月和7.1个月; 一线AZA+Nivo+Ipi治疗的患者, ORR为67%, 中位OS和PFS分别为12个月和10个月, 安全性可耐受, 但由于研究例数较少, 需要在更大的队列中进行更长的随访, 以进一步验证该方案的有效性[21]

2 细胞毒性T淋巴细胞相关抗原-4(cytotoxic T lymphocyte-associated antigen-4, CTLA-4)

CTLA-4表达在活化T细胞, 通过与抗原呈递细胞上的CD80和CD86竞争性结合抑制T细胞的功能。CTLA-4也表达于Treg, 并有助于它们的抑制功能。伊匹木单抗是一种抗CTLA-4单克隆抗体, 它可消除CTLA-4的抑制作用, 增强T细胞介导的细胞毒性。

AML患者, CD80、CD86和CTLA-4在AML原始细胞高表达。几项临床试验结果表明髓系恶性肿瘤(高危MDS和AML以及造血干细胞移植后复发患者)抗CTLA-4单药治疗疗效良好[3]。在正进行的R/R MDS/AML患者的Ⅰ 期研究中, 去甲基化药物(decitabine, DAC)加Ipi联合治疗, 副反应符合预期, 并表现出令人鼓舞的临床活性。此外, 在未接受异基因造血干细胞移植的患者中观察到较高的临床活性[22]。由于AZA + Nivo联合治疗在治疗有反应(response, R)和无反应(not response, NR)的AML患者均能上调骨髓CD8+细胞上的CTLA-4表达[19], 提示AZA + Nivo + Ipi的三联治疗可能会消除PD-1介导的耐药性。Daver N等的研究发现R/R AML患者, AZA + Ipi + Nivo, AZA + Nivo和HMA治疗, 中位OS分别为7.6、5.9和4.6个月(P=0.01), AZA + Nivo + Ipi治疗的R / R AML患者, 1年总生存率为25%, AZA + Ipi + Nivo的中位OS与在许多研究中HMA+BCL-2抑制剂挽救性治疗报道的中位OS 6~8个月相当, 结果表明AZA + Ipi + Nivo相对于AZA + Nivo和HMA治疗, 对于OS仅是略有改善, 而来自AZA + Nivo治疗组, R和NR的患者, 单细胞细胞因子谱分析和单细胞RNA-seq结果显示治疗前和治疗时T细胞的克隆性和肿瘤微环境都显示出惊人的差异, 因此AML免疫治疗中基于生物标志物的研究非常重要[23]

CTLA-4是霍奇金淋巴瘤(Hodgkin lymphoma, HL)肿瘤微环境表达最丰富的免疫检查点受体, 并且CTLA-4阳性T细胞经常聚集在霍奇金Reed-Sternberg(HRS)细胞周围, 为该疾病针对CTLA-4的靶向治疗提供了理论依据[24]。异基因造血干细胞移植后复发的HL患者, 抗CTLA-4单克隆抗体伊匹木单抗治疗后, 14例患者中有2例(14%)CR, 7例患者中2例(29%)部分缓解。伊匹木单抗与PD-1单抗联用与单独抗PD-1治疗相比, 并没有明显提高其反应率[25]。最近Diefenbach CS等的研究评估了brentuximab vedotin+伊匹木单抗+纳武利尤单抗三联疗法的Ⅰ 期临床试验, 结果显示包含伊匹木单抗的治疗方案, 3~4级不良反应更多, 伊匹木单抗组、纳武利尤单抗组和三联体治疗组的ORR为76%、89%和82%, 完全缓解率分别为57%、61%和73%, 中位随访时间为2.6年、2.4年和11.7年, 中位PFS和中位OS未达到。三种组合方案在疗效和毒性方面存在明显差异, 比较两种最活跃的治疗方案, 即brentuximab vedotin+纳武利尤单抗和三联疗法的耐受性和初步活性的一项Ⅱ 期随机临床试验正在进行中[26]

3 T细胞免疫球蛋白和粘蛋白结构域3(T cell immunoglobulin and mucin domain 3, TIM-3)

TIM-3是一种抑制性受体, 在多种免疫细胞以及白血病干/祖细胞和原始细胞上表达, 但在正常的造血干细胞上却不表达, 使其成为AML / MDS有希望治疗的靶标。Sabatolimab是一种高亲和力, 人源化的抗TIM-3的 IgG4抗体, 可同时针对免疫细胞和髓系细胞上的TIM-3, 不仅可以恢复免疫功能, 同时也直接针对白血病干细胞和原始细胞。在STIMULUS临床试验项目中, 正在评估sabatolimab用于治疗中-极高危MDS或AML患者的情况[27]。Ⅰ b期临床研究(NCT03066648)的早期结果显示sabatolimab +去甲基化药物(DAC或AZA)对高/极高风险MDS(+ DAC, 61%; + AZA, 占57%)和新诊断AML患者(+ DAC, 占47%; + AZA, 占29%)总体反应率令人鼓舞, 并且安全性良好[28]。Ⅰ b期临床研究更新结果进一步证明sabatolimab+HMA在AML和高危MDS患者具有良好的耐受性, 并继续显示出有前景的抗白血病活性和持久性。这些结果支持TIM-3作为潜在的治疗靶点, 并为进一步开发AML或高危MDS患者中sabatolimab + HMA的应用提供了基础[29]。Galectin-9(Gal9)是TIM-3的配体, 治疗失败的AML患者Gal9+CD34-细胞的水平明显高于CR的患者, 并且与治疗失败患者骨髓驻留T细胞上TIM-3表达增加有关, 骨髓样本TIM-3表达也明显高于外周血, 该结果表明Gal9 / TIM-3阻断与诱导化疗联合使用也有可能提高AML患者完全缓解率[30]

4 淋巴细胞活化基因3蛋白(lymphocyte activation gene 3 protein, LAG-3)

LAG-3是体内重要的免疫检查点, 主要表达在活化的T细胞、B细胞和NK细胞等。LAG-3通过与配体结合对T淋巴细胞产生负调节作用。LAG-3在各种类型的肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte, TIL)中高表达, 并参与肿瘤的免疫逃逸机制。DLBCL患者肿瘤细胞很少表达LAG-3和PD-1, 但在TIL却广泛表达, 并且与PD-1和TIM-3共表达, LAG-3表达高患者预后差[31, 32]。CHL患者HRS细胞极少LAG-3阳性, 但几乎所有CHL患者微环境中总表达LAG-3和TIM-3, HRS细胞周围的T细胞同时表达PD-1和LAG-3, 可能为靶向LAG-3或TIM-3与抗PD-1抗体联合治疗R/R HL提供基础[33]。一种结合PD-1和LAG-3的双特异性分子MGD013用于R/R DLBCL患者的Ⅰ 期临床研究中, 17例DLBCL患者接受了MGD013, 与治疗相关的不良事件发生率为64.7%, 1例患者出现≥ 3级治疗相关的不良事件, 未观察到肿瘤溶解综合征事件, 治疗有反应的患者, 治疗前肿瘤样本LAG-3, PD-1和PD-L1高表达。初步结果表明MGD013用于R/R DLBCL患者, 具有可接受的安全性和令人鼓舞的抗肿瘤活性[34]。在AML患者, LAG-3与PD-1表达具有明显相关性, LAG-3表达高者预后差, 并且AML患者PD-1与LAG-3高水平共表达患者与伴有FLT3, RUNX1TET2突变AML患者的低OS相关, 这些共表达模式可能是设计新型AML治疗的潜在免疫生物标记[1]

5 T细胞免疫球蛋白和ITIM结构域蛋白(T cell immunoreceptor with immunoglobulin and ITIM domain, TIGIT)

TIGIT是主要在T细胞和NK细胞表面表达的免疫检查点抑制剂, 其配体CD155和CD112可以在不同类型的细胞表达, 包括抗原呈递细胞和肿瘤细胞, 由于TIGIT在肿瘤浸润性T细胞中频繁表达并与CD8+ T细胞衰竭有关, 它已成为癌症的潜在治疗靶点[35]。尽管关键的抑制机制仍不清楚, 尚无TIGIT抗体获批上市, 但越来越多的证据表明, TIGIT是血液系统恶性肿瘤中重要的T细胞免疫检查点。MM患者, TIGIT是PD-1、CTLA-4、LAG-3和TIM-3中最频繁上调的检查点分子, TIGIT阳性T细胞代表功能异常的T细胞亚群。HL患者, 通常TIGIT与PD-1在相同细胞表达, 但在不同患者TIGIT表达差异很大[36]。不同NHL类型的肿瘤内T细胞也发现TIGIT和PD-1高水平共表达, 这些检查点受体共表达的T细胞, IFN-γ , TNF-α 和IL-2产生减少[37]。滤泡性淋巴瘤患者TIGIT在肿瘤内T细胞上高表达, 其表达改变滤泡性淋巴瘤中的T细胞表型, TIGIT在Treg细胞上大量表达, 导致抑制特性增强, TIGIT+T细胞数量增加与患者预后和生存期差有关[38]。AML患者TIGIT+γ δ T细胞增加, 化疗后CR患者TIGIT-CD226+γ δ T细胞恢复, TIGIT+CD226-γ δ T细胞水平较高者总体生存较低[39]。TIGIT与共刺激受体DNAM-1和TACTILE共享配体, AML患者缺乏DNAM-1并共同表达TIGIT和TACTILE的NK和T细胞数量增加, 并与差存活率相关[40]。MDS患者外周血NK和T细胞TIGIT高表达, 并参与疾病进展和MDS的免疫逃逸, 阻断TIGIT可增强NK和T细胞的抗肿瘤作用[41]。这些结果均支持TIGIT有可能作为血液肿瘤新的检查点阻滞靶标。

6 结 语

阻断免疫检查点、增强机体的抗肿瘤免疫是一种有前景的治疗方法。但单药治疗疗效有限, 早期的临床试验中免疫检查点抑制剂与去甲基化药物、传统化疗或其他免疫检查点抑制剂联合应用显示出协同作用, 但联合治疗的最佳组合以及检查点抑制剂治疗的时机选择仍需临床试验进一步研究。此外, 由于疾病的异质性和治疗的个体化, 最佳生物标志物的确定、筛选对检查点抑制剂反应的最佳人选仍是迫切需要解决的问题。期望不久的将来, 反应率高、持续时间长的新联合疗法能给患者带来更好的生存获益。

参考文献
[1] CHEN C, LIANG C F, WANG S Q, et al. Expression patterns of immune checkpoints in acute myeloid leukemia[J]. J Hematol Oncol, 2020, 13(1): 28. [本文引用:2]
[2] WANG H, KAUR G, SANKIN A I, et al. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies[J]. J Hematol Oncol, 2019, 12(1): 59. [本文引用:1]
[3] BEWERSDORF J P, STAHL M, ZEIDAN A M. Immune checkpoint-based therapy in myeloid malignancies: a promise yet to be fulfilled[J]. Expert Rev Anticancer Ther, 2019, 19(5): 393-404. [本文引用:2]
[4] XIE W, MEDEIROS L J, LI S, et al. PD-1/PD-L1 pathway and its blockade in patients with classic hodgkin lymphoma and non-hodgkin large-cell lymphomas[J]. Curr Hematol Malig Rep, 2020, 15(4): 372-381. [本文引用:1]
[5] GODFREY J, TUMULURU S, BAO R, et al. PD-L1 gene alterations identify a subset of diffuse large B-cell lymphoma harboring a T-cell-inflamed phenotype[J]. Blood, 2019, 133(21): 2279-2290. [本文引用:1]
[6] WANG Y, WENZL K, MANSKE M K, et al. Amplification of 9p24. 1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma[J]. Blood Cancer J, 2019, 9(9): 73. [本文引用:1]
[7] SHEN J, LI S, MEDEIROS L J, et al. PD-L1 expression is associated with ALK positivity and STAT3 activation, but not outcome in patients with systemic anaplastic large cell lymphoma[J]. Mod Pathol, 2020, 33(3): 324-333. [本文引用:1]
[8] RIGAUD C, ABBOU S, MINARD-COLIN V, et al. Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma[J]. Pediatr Blood Cancer, 2018, 65(4). [本文引用:1]
[9] IYER S P, XU J, BECNEL M R, et al. A phase Ⅱ study of pembrolizumab in combination with romidepsin demonstrates durable responses in relapsed or refractory T-cell lymphoma (TCL)[J]. Blood, 2020, 136(1S): 40-41. [本文引用:1]
[10] MOSKOWITZ A L J, SHAH G, SCHÖDER H, et al. Phase Ⅱ study of pembrolizumab plus GVD as second-line therapy for relapsed or refractory classical hodgkin lymphoma[J]. Blood, 2020, 136(1S): 17-18. [本文引用:1]
[11] GAO Y, HUANG H, WANG X, et al. Anti-PD-1 antibody (sintilimab) plus histone deacetylase inhibitor (chidamide) for the treatment of refractory or relapsed extranodal natural killer/T cell lymphoma, nasal type (r/r-ENKTL): Preliminary results from a prospective, multicenter, single-arm, phase Ⅰb/Ⅱ trial (SCENT)[J]. Blood, 2020, 136(1S): 39-40. [本文引用:1]
[12] QUERFELD C, TSAI N, PALMER J, et al. Phase 1 results of anti-PD-ligand 1 (durvalumab) & lenalidomide in patients with cutaneous T cell lymphoma and correlation with programmed death ligand 1 expression and gene expression profile[J]. Blood, 2020, 136(1S): 20. [本文引用:1]
[13] MATEOS M V, ORLOWSKI R Z, OCIO E M, et al. Pembrolizumab Combined with lenalidomide and low-dose dexamethasone for relapsed or refractory multiple myeloma: Phase I KEYNOTE-023 study[J]. Br J Haematol, 2019, 186(5): e117-e21. [本文引用:1]
[14] MATEOS M V, BLACKLOCK H, SCHJESVOLD F, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): A rand omised, open-label, phase 3 trial[J]. Lancet Haematol, 2019, 6(9): e459-e469. [本文引用:1]
[15] SALIK B, SMYTH M J, NAKAMURA K. Targeting immune checkpoints in hematological malignancies[J]. J Hematol Oncol, 2020, 13(1): 111. [本文引用:2]
[16] ALRASHEED N, LEE L, GHORANI E, et al. Marrow-infiltrating regulatory T cells correlate with the presence of dysfunctional CD4+PD-1+ cells and inferior survival in patients with newly diagnosed multiple myeloma[J]. Clin Cancer Res, 2020, 26(13): 3443-3454. [本文引用:1]
[17] BADROS A Z, MA N, RAPOPORT A P, et al. Long-term remissions after stopping pembrolizumab for relapsed or refractory multiple myeloma[J]. Blood Adv, 2019, 3(11): 1658-1160. [本文引用:1]
[18] KWON M, KIM C G, LEE H, et al. PD-1 blockade reinvigorates bone marrow CD8+ T cells from patients with multiple myeloma in the presence of TGFβ inhibitors[J]. Clin Cancer Res, 2020, 26(7): 1644-1655. [本文引用:1]
[19] DAVER N, GARCIA-MANERO G, BASU S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrand omized, open-label, phase Ⅱ study[J]. Cancer Discov, 2019, 9(3): 370-383. [本文引用:2]
[20] ABBAS H A, HAO D, TOMCZAK K, et al. Single-cell characterization of acute myeloid leukemia (AML) and its microenvironment identifies signatures of resistance to PD-1 blockade based therapy[J]. Blood, 2020, 136(1S): 29-31. [本文引用:1]
[21] MORITA K, KANTARJIAN H M, BRAVO G M, et al. A phaseⅡ study of double immune checkpoint inhibitor blockade with nivolumab and ipilimumab with or without azacitidine in patients with myelodysplastic syndrome (MDS)[J]. Blood, 2020, 136(1S): 7-9. [本文引用:1]
[22] GARCIA J S, FLAMAND Y, TOMLINSON B K, et al. Safety and efficacy of decitabine plus ipilimumab in relapsed or refractory MDS/AML in the post-BMT or transplant naïve settings[J]. Blood, 2020, 136(1S): 15-17. [本文引用:1]
[23] DAVER N, BASU S, GARCIA-MANERO G, et al. Azacitidine (AZA) with nivolumab (Nivo), and AZA with nivo + ipilimumab (Ipi) in relapsed/refractory (R/R) acute myeloid leukemia: Clinical and immune biomarkers of response[J]. Blood, 2020, 136(1S): 43-45. [本文引用:1]
[24] PATEL S S, WEIRATHER J L, LIPSCHITZ M, et al. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative[J]. Blood, 2019, 134(23): 2059-2069. [本文引用:1]
[25] HOUOT R, MERRYMAN R W, MORSCHHAUSER F. Total immunotherapy for Hodgkin lymphoma[J]. Lancet Haematol, 2020, 7(9): e629-e630. [本文引用:1]
[26] DIEFENBACH C S, HONG F, AMBINDER R F, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: Phase 1 results of an open-label, multicentre, phase 1/2 trial[J]. Lancet Haematol, 2020, 7(9): e660-e670. [本文引用:1]
[27] ZEIDAN A M, ESTEVE J, GIAGOUNIDIS A, et al. The STIMULUS Program: Clinical trials evaluating sabatolimab (MBG453) combination therapy in patients (Pts) with higher-risk myelodysplastic syndromes (HR-MDS) or acute myeloid leukemia (AML)[J]. Blood, 2020, 136(1S): 45-46. [本文引用:1]
[28] BORATE U, ESTEVE J, PORKKA K, et al. Phase Ib study of the anti-TIM-3 antibody MBG453 in combination with decitabine in patients with high-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML)[J]. Blood, 2019, 134(1S): 570. [本文引用:1]
[29] BRUNNER A M, ESTEVE J, PORKKA K, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS): Updated results from a phase Ⅰb study[J]. Blood, 2020, 136(1S): 1-2. [本文引用:1]
[30] DAMA P, TANG M, FULTON N, et al. Gal9/Tim-3 expression level is higher in AML patients who fail chemotherapy[J]. J Immunother Cancer, 2019, 7(1): 175. [本文引用:1]
[31] CHEN B J, DASHNAMOORTHY R, GALERA P, et al. The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma[J]. Oncotarget, 2019, 10(21): 2030-2040. [本文引用:1]
[32] KEANE C, LAW S C, GOULD C, et al. LAG3: A novel immune checkpoint expressed by multiple lymphocyte subsets in diffuse large B-cell lymphoma[J]. Blood Adv, 2020, 4(7): 1367-1377. [本文引用:1]
[33] EL HALABI L, ADAM J, GRAVELLE P, et al. Expression of the immune checkpoint regulators LAG-3 and TIM-3 in classical hodgkin lymphoma[J]. Clin Lymphoma Myeloma Leuk, 2020: S2152-2650(20): 30633-9. [本文引用:1]
[34] WANG J, ASCH AS, HAMAD N, et al. A phase 1, open-label study of MGD013, a Bispecific DART® molecule binding PD-1 and LAG-3 in Patients with relapsed or refractory diffuse large B-cell lymphoma[J]. Blood, 2020, 136(1S): 21-22. [本文引用:1]
[35] CHAUVIN J M, ZAROUR H M. TIGIT in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000957. [本文引用:1]
[36] LI W, BLESSIN NC, SIMON R, et al. Expression of the immune checkpoint receptor TIGIT in Hodgkin's lymphoma[J]. BMC Cancer, 2018, 18(1): 1209. [本文引用:1]
[37] JOSEFSSON S E, BEISKE K, BLAKER Y N, et al. TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non-hodgkin lymphoma[J]. Cancer Immunol Res, 2019, 7(3): 355-362. [本文引用:1]
[38] YANG Z Z, KIM H J, WU H, et al. TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma[J]. Clin Cancer Res, 2020, 26(19): 5217-5231. [本文引用:1]
[39] JIN Z, LAN T, ZHAO Y, et al. Higher TIGIT+CD226- γδ T cells in patients with acute myeloid leukemia[J]. Immunol Invest, 2020: 1-11. [本文引用:1]
[40] VALHONDO I, HASSOUNEH F, LOPEZ-SEJAS N, et al. Characterization of the DNAM-1, TIGIT and TACTILE Axis on Circulating NK, NKT-Like and T Cell Subsets in Patients with Acute Myeloid Leukemia. Cancers (Basel)[J]. 2020, 12(8): 2171. [本文引用:1]
[41] MENG F, LI L, LU F, et al. Overexpression of TIGIT in NK and T Cells Contributes to Tumor Immune Escape in Myelodysplastic Syndromes[J]. Front Oncol, 2020, 10: 1595. [本文引用:1]