利用线性模型的置换检验实现Meta分析: 基于SAS宏的实现

    Meta-Analysis Using The Permutation Test of The Linear Model: Implementation Based on The SAS Macro

    • 摘要: 目的 介绍利用线性模型的置换检验实现小样本研究的Meta分析方法。 方法 通过Fleiss93cont实例介绍美国南佛罗里达大学Kromrey等共同研发的一款基于线性模型的置换检验实现协变量分析的SAS 宏命令(%METAPERM2)。该数据集中的小样本研究并不能满足正态性、独立性、方差齐性等前提假设。 结果 采用广义线性模型的回归系数为: X1(年龄)=0.125,X2(地区)=0.291。五种回归权重检验方法的结果为: 传统加权最小二乘法β1=0.000,β2=0.338;Freedman Lane模型β1=0.228,β2=0.180;Kennedy模型β1=0.472,β2=0.557;Manly模型β1=0.064,β2=0.040;Ter Braak模型β1=0.075,β2=0.142。 结论 在正态性、独立性、方差齐性理论假设条件下,传统最小二乘法系数检验的显著性比任何置换检验都要大;小样本研究的Meta分析采用置换检验可能是一种更为合适的统计学方法。

       

      Abstract: Objective To introduce a meta-analysis method based on permutation test of linear models for small-sample meta-analysis. Methods A Fleiss93cont example was used to introduce a SAS macro(%METAPERM2) for covariate analysis developed by Kromrey of the Southern University of Florida in USA. This small-sample dataset did not satisfy the assumptions such as normality, independence and homogeneity of variance. Results The regression coefficient of generalized linear model was X1 (age)=0.125, X2 (area)=0.291. The results of the five regression weight test methods were: The traditional weighted least squares (WLS) β1=0.000, β2=0.338, Freedman Lane model β1=0.228, β2=0.180, Kennedy model β1=0.472, β2=0.557, Manly model β1=0.064, β2=0.040,Ter Braak model β1=0.075, β2=0.142. Conclusions Based on the hypothesis of normality, independence and homogeneity of variance, the significance of the traditional WLS coefficient test was larger than that of any permutation test, and permutation test may be a more suitable statistical method for small-sample meta-analysis.

       

    /

    返回文章
    返回